Marker-Assisted Molecular Profiling, Deletion Mutant Analysis, and RNA-Seq Reveal a Disease Resistance Cluster Associated with Uromyces appendiculatus Infection in Common Bean Phaseolus vulgaris L.
نویسندگان
چکیده
Common bean (Phaseolus vulgaris L.) is an important legume, useful for its high protein and dietary fiber. The fungal pathogen Uromyces appendiculatus (Pers.) Unger can cause major loss in susceptible varieties of the common bean. The Ur-3 locus provides race specific resistance to virulent strains or races of the bean rust pathogen along with Crg, (Complements resistance gene), which is required for Ur-3-mediated rust resistance. In this study, we inoculated two common bean genotypes (resistant "Sierra" and susceptible crg) with rust race 53 of U. appendiculatus, isolated leaf RNA at specific time points, and sequenced their transcriptomes. First, molecular markers were used to locate and identify a 250 kb deletion on chromosome 10 in mutant crg (which carries a deletion at the Crg locus). Next, we identified differential expression of several disease resistance genes between Mock Inoculated (MI) and Inoculated (I) samples of "Sierra" leaf RNA within the 250 kb delineated region. Both marker assisted molecular profiling and RNA-seq were used to identify possible transcriptomic locations of interest regarding the resistance in the common bean to race 53. Identification of differential expression among samples in disease resistance clusters in the bean genome may elucidate significant genes underlying rust resistance. Along with preserving favorable traits in the crop, the current research may also aid in global sustainability of food stocks necessary for many populations.
منابع مشابه
Genome-Wide Profiling of Histone Modifications (H3K9me2 and H4K12ac) and Gene Expression in Rust (Uromyces appendiculatus) Inoculated Common Bean (Phaseolus vulgaris L.)
Histone modifications such as methylation and acetylation play a significant role in controlling gene expression in unstressed and stressed plants. Genome-wide analysis of such stress-responsive modifications and genes in non-model crops is limited. We report the genome-wide profiling of histone methylation (H3K9me2) and acetylation (H4K12ac) in common bean (Phaseolus vulgaris L.) under rust (U...
متن کاملFine Mapping of Ur-3, a Historically Important Rust Resistance Locus in Common Bean
Bean rust, caused by Uromyces appendiculatus, is a devastating disease of common bean (Phaseolus vulgaris) in the Americas and Africa. The historically important Ur-3 gene confers resistance to many races of the highly variable bean rust pathogen that overcome other rust resistance genes. Existing molecular markers tagging Ur-3 for use in marker-assisted selection produce false results. Here, w...
متن کاملIdentification of Rafd Markers Linked to a Major Gene for Rust Resistance and Indeterminate Growth Habit Using Bulked Segregant Analysis in a Common Bean Cross
Rust, incited by Uromyces appendiculatus^ is a major disease in common bean {Phaseolus vulgaris L,). Plant growth habit is also an important trait. Indeterminate growth habit was first reported to be controlled by a single dominant gene (Fin) (Lamprecht, 1935). Molecular markers such as isozymes, RFLP, and RAPD, have been used to tag genes for many traits, particularly disease resistance in sev...
متن کاملUromyces appendiculatus in Honduras: Pathogen Diversity and Host Resistance Screening
Acevedo, M., Steadman, J. R., and Rosas, J. C. 2013. Uromyces appendiculatus in Honduras: Pathogen diversity and host resistance screening. Plant Dis. 97:652-661. Bean rust, caused by the fungus Uromyces appendiculatus, is a major constraint for common bean production worldwide. Virulence of U. appendiculatus collected from wild and cultivated Phaseolus spp. was examined in 28 locations across ...
متن کاملDisease-resistance related sequences in common bean.
Primers based on a conserved nucleotide binding site (NBS) found in several cloned plant disease resistance genes were used to amplify DNA fragments from the genome of common bean (Phaseolus vulgaris). Cloning and sequence analysis of these fragments uncovered eight unique classes of disease-resistance related sequences. All eight classes contained the conserved kinase 2 motif, and five classes...
متن کامل